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Abstract

The critical height for buckling of a linearly elastic cantilevered column due to its self-weight was determined by

Greenhill in 1881. Postbuckling behavior also has been studied, often assuming that the column is an elastica (inex-

tensible, with its bending moment proportional to its curvature). The bifurcation point at the critical height is super-

critical, so that the postbuckling path is stable as the height increases past its critical value. Subcritical bifurcation may

occur if the column is nonlinearly elastic with a softening behavior. This results in a sudden jump from the straight

vertical configuration to a severely-drooped shape. The governing equation is solved numerically with the use of a

shooting method to obtain the equilibrium paths. Also, small vibrations about the straight and postbuckled equilibrium

states are examined, and vibration frequencies (and hence stability properties) are obtained. An initial curvature of the

column is included in the analysis. Experiments are conducted to verify the results qualitatively for linearly elastic and

softening materials.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In a classic paper, Greenhill (1881) considered a linearly elastic, uniform, cantilevered column subjected

only to its self-weight. The linear equilibrium equation has a nonconstant coefficient. Greenhill obtained a

solution in terms of Bessel functions and found the value of the critical height.
Large deflections for this problem have been treated in a number of papers, including Frisch-Fay (1961),

Denman and Schmidt (1970), Schmidt and DaDeppo (1970), Wang (1971, 1986), Hsu and Hwang (1988),

and Fraser and Champneys (2001) for uniform columns, and Stuart (2001) for a tapered column. The

columns were assumed to be linearly elastic, with the curvature proportional to the bending moment. If the
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height is plotted versus a displacement measure, the bifurcation at the critical height is supercritical.

Therefore the column exhibits a smooth transition from the vertical configuration to stable drooped states,

and the amount of droop increases continuously as the height of the column is increased.

Acheson (1997), Fraser and Champneys (2001), and Mullin et al. (2004) described experiments involving
a curtain wire. It has an inner core consisting of a tightly-wound spring, covered by a plastic coating. This

wire exhibits subcritical bifurcation. When the critical height is reached, the vertical wire suddenly jumps to

a severely-drooped configuration. As explained by Fraser and Champneys (2001), this occurs because of the

softening behavior of the wire when subjected to bending.

Inextensible columns with softening behavior are considered here. The curvature is assumed to be a

cubic function of the bending moment and models the relationship for the curtain wire (a quintic function is

used in one case). Linearly elastic behavior is a special case, leading to the standard elastica formulation.

An initial deflection with constant curvature is included. Equilibrium paths are determined numerically
using a shooting method. Small vibrations about equilibrium states are also investigated, and vibration

frequencies are computed.

In Section 2, a linear analysis is carried out. Nonlinear equilibrium paths are examined in Section 3, and

examples of supercritical and subcritical bifurcation are presented. Fundamental frequencies for vibrations

about the equilibrium states are plotted. Experimental work is described in Section 4, using a linearly elastic

fiber and a lexan rod, and the softening curtain wire mentioned above. Concluding remarks are given in

Section 5. A similar type of investigation for a vertical half-loop under self-weight is presented in Plaut and

Virgin (2004).
Some further related references can be mentioned. Wang (1996) analyzed the postbuckling of a canti-

levered column with a softening behavior, subjected to a vertical load at its tip. Additional recent papers

involving self-weight buckling include El Naschie and Hussein (2000), Li (2000, 2001), Teng and Yao

(2000), and Lim and Ma (2003).
2. Small displacements

Consider the column shown in Fig. 1. It has height H , constant bending stiffness EI, and constant weight

W per unit length. The equilibrium equation is
EIY 0000ðX Þ þ W ðH
�

� X ÞY 0ðX Þ
�0 ¼ 0: ð1Þ
To put the analysis in nondimensional terms, define
a ¼ EI

W

� �1=3

; x ¼ X
a
; y ¼ Y

a
; h ¼ H

a
: ð2Þ
(The lengths are not nondimensionalized by H , since the height is the parameter of interest.) This leads

to the following equation:
y 0000ðxÞ þ ½ðh� xÞy0ðxÞ�0 ¼ 0: ð3Þ
The boundary conditions are yð0Þ ¼ y0ð0Þ ¼ y00ðhÞ ¼ y 000ðhÞ ¼ 0. The critical nondimensional height is
hcr ¼ 1:986 (Timoshenko and Gere, 1961; Wang, 1986).

Approximate values of the critical height can be obtained with the use of the Rayleigh–Ritz method

(Marion and Thornton, 1988; Schmidt, 1998). The potential energy U is given by
U ¼ 1

2

Z h

0

ðy00Þ2 dx� 1

2

Z h

0

ðh� xÞðy0Þ2 dx: ð4Þ



Fig. 1. Geometry of column subjected to self-weight.
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Making U stationary for the kinematically admissible function yðxÞ ¼ a1xb, where b > 1 leads to the

approximate critical height hcr ¼ 2:289 if b ¼ 2, and the value hcr ¼ 2:143 for the minimizing choice

b ¼ 1:747. If yðxÞ ¼ a1½1� cosðbx=hÞ�, one obtains hcr ¼ 2:025 for b ¼ p=2 (corresponding to the buckling

mode for a cantilever with axial end load, as used in Virgin (1987)), and hcr ¼ 2:003 for the optimal value

b ¼ 1:829. Finally, the two-term approximation yðxÞ ¼ a1x2 þ a2x3 furnishes the excellent approximation

hcr ¼ 1:991.
3. Large displacements

3.1. Formulation

Consider motion of the column and let T denote time. If the slope of the column is not small, the analysis
is carried out in terms of the arc length S and the tangential angle hðS; T Þ shown in Fig. 1(c), as well as the

coordinates X ðS; T Þ and Y ðS; T Þ. The bending moment is MðS; T Þ, the cross-sectional forces are P ðS; T Þ in
the X direction and QðS; T Þ in the �Y direction on a positive face, and the initial angle is h0ðSÞ if the column

is imperfect and has an initial displacement.

A nonlinear moment–curvature relationship is assumed with the form
EI
oh
oS

�
� dh0

dS

�
¼ M 1

�
þ c

Ma
EI

� �r�
; ð5Þ
where c ¼ 0 for the usual linearly elastic elastica, and c and r are positive for softening behavior. Examples

of this relationship in nondimensional terms (m ¼ Ma=EI; s ¼ S=a) with r ¼ 2 and c ¼ 4 or 8 are plotted in

Fig. 2, along with c ¼ 0. The case r ¼ 2 and c ¼ 4 gives a good approximation to the behavior of the

curtain wire used in Acheson (1997), Fraser and Champneys (2001), and Mullin et al. (2004), and in some of

the experiments to be described in Section 4. This was determined by clamping different lengths of the

curtain wire to form a horizontal cantilever, measuring the downward tip displacement caused by self-

weight, and comparing the data to numerical results of a nonlinear beam analysis using (5) with various
combinations of r and c.
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Fig. 2. Nondimensional moment–curvature relation with r ¼ 2 and c ¼ 0; 4; 8.
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From geometry and equilibrium including inertia loads, and neglecting longitudinal and rotary inertias,

the governing equations are
oX
oS

¼ cos h;

oY
oS

¼ sin h;

oM
oS

¼ P sin hþ Q cos h;

oP
oS

¼ W þ W
g

o2X
oT 2

;

oQ
oS

¼ �W
g

o2Y
oT 2

;

ð6Þ
(where g is gravitational acceleration), along with the constitutive law (5). The quantities X ; Y ; h;M ; P , and
Q are written in terms of an equilibrium component and a dynamic component involving a vibration mode

with frequency x, as follows:
X ðS; T Þ ¼ XeðSÞ þ XdðSÞ sinxT ;
Y ðS; T Þ ¼ YeðSÞ þ YdðSÞ sinxT ;
hðS; T Þ ¼ heðSÞ þ hdðSÞ sinxT ;
MðS; T Þ ¼ MeðSÞ þMdðSÞ sinxT ;
P ðS; T Þ ¼ �ðH � SÞW þ PdðSÞ sinxT ;
QðS; T Þ ¼ QdðSÞ sinxT :

ð7Þ
(P ¼ �ðH � SÞW and Q ¼ 0 for equilibrium states.) These quantities are substituted into (5) and (6), and
the nonlinear dynamic terms are neglected. Then the equations are put in nondimensional form using the
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definitions of x; y; and h in (2), as well as s ¼ S=a;m ¼ Ma=ðEIÞ; p ¼ Pa2=ðEIÞ; q ¼ Qa2=ðEIÞ; j ¼
dh0=ds; t ¼ T

ffiffiffiffiffiffiffiffi
g=a

p
, and X ¼ x

ffiffiffiffiffiffiffiffi
a=g

p
, where j is the nondimensional initial curvature and will be constant

in the numerical examples.

The equations governing equilibrium are obtained from the terms not involving sinXt, and are given by
x0e ¼ cos he;

y0e ¼ sin he;

h0e ¼ me þ cmrþ1
e þ j;

m0
e ¼ �ðh� sÞ sin he;

ð8Þ
where primes (0) denote differentiation with respect to s. The boundary conditions at s ¼ 0 are

xe ¼ ye ¼ he ¼ 0, while me ¼ 0 at s ¼ h.
The equations governing small vibrations about an equilibrium state are
x0d ¼ �hd sin he;

y0d ¼ hd cos he;

h0d ¼ md þ ðr þ 1Þcmr
emd ;

m0
d ¼ qd½ � ðh� sÞhd � cos he þ pd sin he;

p0d ¼ �X2xd

q0d ¼ X2yd :

ð9Þ
At s ¼ 0; xd ¼ yd ¼ hd ¼ 0, and at s ¼ h;md ¼ pd ¼ qd ¼ 0.

3.2. Numerical results

Numerical solutions are obtained using a shooting method with the subroutines NDSolve and FindRoot

in Mathematica (Wolfram, 1991). To obtain nontrivial equilibrium states using (8), values of j; c; r; and
með0Þ are specified, and h is varied until meðhÞ ¼ 0 with sufficient accuracy. The value of með0Þ is changed to

determine the equilibrium path.

Results for the linearly elastic case (the elastica) are shown in Fig. 3(a), where the height h is plotted

versus the lateral tip deflection yðhÞ. If the column has no initial curvature (j ¼ 0), there is a trivial solution

yeðxÞ ¼ 0. The first bifurcation point occurs at the critical height hcr ¼ 1:986, and the trivial solution is

unstable for larger values of h. The bifurcation point is supercritical (i.e., stable-symmetric), and the column
smoothly begins to droop as the height is increased past its critical value. Equilibrium paths are also
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Fig. 3. Equilibrium paths for (a) linearly elastic column (c ¼ 0), (b) softening column with r ¼ 2 and c ¼ 4.
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depicted for the initial curvatures j ¼ 0:1 and 0.2. The primary imperfect paths emanating from h ¼ 0

consist of stable equilibrium states. The secondary imperfect paths are stable to the left of their minima.

The portions to the right of the minima are unstable and are cut off in Fig. 3(a); they continue to rise and

approach a postbuckled perfect path associated with the second bifurcation point (h ¼ 3:823). A per-
spective of a linearly elastic drooped configuration is drawn in Fig. 4(a). For drooped shapes, h should be

interpreted physically as the nondimensional length of the column, rather than the height.

Results are presented in Fig. 3(b) for a nonlinearly elastic (softening) column with r ¼ 2 and c ¼ 4 in the

moment–curvature relationship (5). The bifurcation is subcritical. For the perfect case (j ¼ 0), when the

height h reaches the critical value 1.986 the configuration jumps from the straight vertical shape to a severely-

drooped shape with its tip below the base at ðxe; yeÞ ¼ ð�1:29; 1:11Þ and tip rotation he ¼ 2:71. If the initial
curvature is j ¼ 0:1, the equilibrium path has a limit (turning) point at h ¼ 1:671 with tip values

ðxe; ye; heÞ ¼ ð1:59; 0:47; 0:45Þ, and the column then suddenly moves to a drooped configuration with
ðxe; ye; heÞ ¼ ð�0:59; 1:31; 2:37Þ at its tip. Similarly, if j ¼ 0:2, the limit point occurs at h ¼ 1:564
with ðxe; ye; heÞ ¼ ð1:39; 0:66; 0:69Þ at the tip, and the column then suddenly moves to a state with

ðxe; ye; heÞ ¼ ð�0:19; 1:35; 2:14Þ at its tip. The unstable parts of the secondary paths are cut off at yðhÞ ¼ 0.

Plotted in Fig. 4(b) is a sequence of events as the length of a slightly imperfect, drooped softening column

is gradually reduced. Starting from the heavily postbuckled point A, the length is reduced with the tip of the

column passing through points B, C, and D, at which point the local minimum of the equilibrium path is

reached, causing the column to dynamically spring to its (almost) upright position. These minima are near

h ¼ 1:5 in Fig. 3(b). Computations also were carried out for the case r ¼ 2 and c ¼ 8. The equilibrium paths
are similar to those in Fig. 3(b). The limit point occurs at h ¼ 1:612 if j ¼ 0:1, and at h ¼ 1:494 if j ¼ 0:2.

The equilibrium paths can also be plotted with the height as a function of the base moment, and rep-

resentative plots for the linearly elastic and softening columns are shown in Fig. 5(a) and (b), respectively.

For the column with no initial curvature (j ¼ 0), it is of interest to know if the bifurcation point is

supercritical, as in Figs. 3(a) and 5(a), or subcritical, as in Figs. 3(b) and 5(b). Equilibrium paths of height

versus base moment are plotted in Fig. 6(a) for r ¼ 2 and in Fig. 6(b) for r ¼ 4. For r ¼ 2, the bifurcation is

supercritical if c < 0:2. Hence the curve for c ¼ 0:1 rises as the nontrivial path leaves the bifurcation point,

but the curves for c ¼ 0:5 and 1.0 initially fall. For r ¼ 4, all curves in Fig. 6(b) initially rise. However, this
local behavior does not imply here that the curves continue to rise. The postbuckling curves in Fig. 6(b)
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Fig. 4. (a) A stable drooped configuration for the linearly elastic column, (b) a sequence of states for the softening column.
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exhibit a limit (maximum) point, then fall to a local minimum point, and then rise again. For c ¼ 0:5 and

1.0, this behavior is significant. Even though the bifurcation point is stable-symmetric, if there were a

sufficiently small imperfection, the equilibrium path would exhibit a limit point at a lower height than the

critical one, which is behavior normally associated with an unstable bifurcation point.
Fig. 7 shows the equilibrium shapes for the linearly elastic column (j ¼ 0) in which each position cor-

responds to an incremental increase in base moment starting from just beyond the critical point.

Fundamental vibration frequencies are plotted in Figs. 8 and 9. The ordinate is the height h and the

abscissa is X2, the square of the frequency for small vibrations about the equilibrium state. Negative values

of X2 are associated with unstable equilibrium states and with motions that grow exponentially (so X is then

not a vibration frequency). In the application of the shooting method to solve Eq. (9) numerically, the

equilibrium state is known. The vibration amplitude is arbitrary, so mdð0Þ, for example, is given a value,

and pdð0Þ; qdð0Þ, and X2 are varied until mdðhÞ ¼ pdðhÞ ¼ qdðhÞ ¼ 0 with sufficient accuracy.
The linearly elastic case (c ¼ 0) is considered in Fig. 8. For the perfect column (j ¼ 0), the solid curve

corresponds to vibrations about the straight configuration, which is stable for h6 1:986. The fundamental

frequency is zero at the critical height. The curve is convex toward the origin, unlike typical characteristic

curves in which a loading parameter (rather than the height) is plotted versus the frequency squared

(Huseyin, 1978). Frequencies for vibrations about the stable postbuckled equilibrium path for the perfect
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column are plotted as the dashed curve. For the imperfect case j ¼ 0:2, frequencies are shown as the dotted

curve. The equilibrium states are stable. As the height is increased, the fundamental frequency decreases till

the height h is close to its critical value for the perfect column, and then the frequency increases.

Results are presented in Fig. 9 for the softening column with r ¼ 2 and c ¼ 4. For the perfect case,
frequencies for small vibrations about the straight configuration are not affected by the nonlinearity in the

moment–curvature relationship, and hence the solid curve is the same as in Fig. 8. For the bifurcating path,

the equilibrium states in Fig. 3(b) are unstable from the bifurcation point to the minimum point. Hence the

corresponding squares of the frequencies on the dashed curve in Fig. 9 are negative from h ¼ 1:986 till
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h ¼ 1:517 (where X2 ¼ 0 again), and then become positive along the equilibrium path. For the imperfect

case j ¼ 0:2, the dotted curve has a local maximum at the critical height h ¼ 1:564. The values of the

frequency squared are negative when the equilibrium path is between the limit point and the turning point

at h ¼ 1:492 in Fig. 3(b), and then are positive and are almost the same as those for the perfect column.
4. Experiments

A number of simple experiments were conducted on slender struts which could be extended to a sufficient

vertical length such that self-buckling was induced. For the linearly elastic case, two columns were tested.

First, equilibrium paths and natural frequencies were determined using an axisymmetric fiber-optic fila-

ment. The fiber was placed in an upright position and the length was incrementally increased. Fig. 10(a)
shows a typical equilibrium path which suggests buckling between H ¼ 15 and 20 cm. In this case an

estimate of the flexural rigidity was obtained from the droop of a horizontal fiber cantilever, and using the

theoretical critical length, 1:986ðEI=W Þ1=3, resulted in an estimate very close to 20 cm, which is close to the

height at the minimum value of the fundamental frequency, also shown in Fig. 10(a). The linearly elastic

column clearly exhibits a supercritical bifurcation with a continuous deflected configuration throughout the

change in length.

Second, a flat, slender strip of lexan was used to measure some more natural frequencies in which the

geometry of the cross section ensured unambiguous motion in a plane. The free end of the strut was
subjected to a small perturbation and subsequent oscillations were monitored using a laser vibrometer. The

fundamental frequency content was then extracted, with the results shown in Fig. 10(b). The reduction in

the lowest natural frequency can clearly be seen as buckling is approached (the theoretical critical length is

approximately 110 cm in this case), together with an increase in the postbuckling frequencies. The form of

the length–frequency relation follows the theoretical curves depicted in Fig. 8 quite closely. Also, the

inevitable presence of a little damping has a minor effect on the frequencies, but this is not considered in the

analysis in this paper.

A softening cable (the curtain wire mentioned in Section 1) was also subjected to some simple experi-
ments. A photograph of the cable in a postbuckled (drooped) equilibrium configuration is shown in Fig. 11.
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Fig. 11. A photograph of the softening cable column in a postcritical equilibrium configuration.
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Again, the strut (with a circular cross section consisting of a plastic-coated, tight steel coil) was mounted
vertically with a clamped boundary condition at the base. The static equilibrium deflections together with

the frequencies of small-amplitude vibrations were measured. Fig. 12(a) shows the equilibrium path as a

relation between the length of the cable and the horizontal deflection at the tip. The sudden jump at

criticality is evident, when the length is a little over 40 cm (triangles). Since the subcritical bifurcation is

associated with imperfection sensitivity, the critical length for the trivial equilibrium position may change

quite drastically due to small initial imperfections. The cable is not quite perfectly straight in its unstressed

configuration. The sensitivity of this system is highlighted by a second set of measurements taken from

nominally the same system (in fact, using the other end of the cable sample), for which the critical length (at
the limit point) was found to be about 47 cm (circles). Next, the length of the severely-drooped cable was

reduced. In both cases, the critical length associated with the droop just prior to a dynamic return to the

upright position (leftward-pointing arrow in Fig. 12(a)) was found to be about 37 cm, i.e., at the other end

of the hysteresis cycle. In some ways this is not so surprising since that critical point (the minimum point in

Fig. 3(b)) is associated with a regular limit point (i.e., not a perturbed subcritical bifurcation) and hence is

not imperfection sensitive.

Some fundamental natural frequencies are shown in Fig. 12(b). These were taken from the original test

(corresponding to the triangles in Fig. 12(a)) and clearly show the decay towards zero. They have essentially
the same form as for the linearly elastic case until buckling occurs (circles), as mentioned earlier. One

practical difference is that in the subcritical case it becomes very difficult to generate finite vibrations, due to
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the shrinking basin of attraction as criticality is approached. After the finite jump at the critical limit point,

the system restabilizes onto the stable remote postbuckled (drooped) equilibrium path and natural fre-

quencies of small oscillations begin to increase as the droop increases (triangles). The hysteresis is again

illustrated by subsequently reducing the cable length and observing real frequencies till the cable snaps back

up to its vertical position (which occurs for a shorter length than the initial loss of stability). As for the fiber
and the lexan rod, this sequence of events in the experimental frequency–load relation shows a good

qualitative agreement with the theoretical results.
5. Concluding remarks

Inextensible cantilevered columns with linearly elastic or softening behavior have been considered. The
columns were only subjected to their self-weight, and were either perfect or were imperfect with a constant

initial curvature. Equilibrium configurations and small vibrations about those states were investigated.

Both numerical and experimental results were presented.

If the column is linearly elastic, it is not imperfection sensitive. When it is perfect and its height is in-

creased, it transitions smoothly from its vertical configuration to a postbuckled (drooped) shape after the

critical height (h ¼ 1:986) is reached. When it has an initial curvature, its shape changes smoothly as its

length is increased.

If the column has the softening moment–curvature relation given by (5) with c ¼ 4 and r ¼ 2 (Fig. 2), the
bifurcation at the critical height is subcritical (unstable-symmetric) instead of supercritical (stable-sym-

metric), and the column is imperfection sensitive. For the perfect case, the column jumps to a severely-

drooped configuration when the critical height (h ¼ 1:986) is attained. If the column has a small initial

curvature, a jump occurs when the height reaches a lower value. This softening model is based on the

behavior of a curtain wire consisting of a tightly-wound steel spring covered by a plastic coating. Its

buckling behavior under self-weight is hence quite different from that of a typical isotropic column, even

though its critical height in nondimensional terms is the same.

An interesting type of behavior was shown in Fig. 6(b). If the coefficient of the nonlinear softening term
is not sufficiently large, the bifurcation is stable-symmetric and the postbuckling curve rises initially.
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However, it then may fall to a minimum value significantly lower than the bifurcation value. Thus a dis-

turbance to the perfectly-straight vertical column may cause it to jump to a stable drooped state before the

critical height is reached, and with small imperfections, the column acts like an imperfection sensitive

system having an unstable bifurcation point.
Small vibrations about the prebuckled and postbuckled equilibrium states were examined. The funda-

mental frequency is zero at the bifurcation and limit (turning) points on the equilibrium paths. Therefore

these critical points can sometimes be predicted by extrapolating frequency data at various levels of load or

height before instability occurs (Plaut and Virgin, 1990; Virgin and Plaut, 2002).

Some simple experiments verified the main features of the equilibrium and dynamic behavior for both

the linearly elastic and softening columns.

A planar half-loop, which lies above two vertical clamped supports and is subjected to self-weight, is

analyzed in a companion paper (Plaut and Virgin, 2004). When its length is increased, it exhibits some
similarities in stability and vibration behavior to the column considered here.
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